
Building Security In
Editor: Gary McGraw, gem@cigital.com

source-code security analysis with
static analysis tools.

Since ITS4’s release in early 2000
(www.cigital.com/its4/), the idea of
detecting security problems through
source code has come of age. ITS4 is
extremely simple—the tool basically
scans through a file looking for syntac-
tic matches based on several simple
“rules” that might indicate possible se-
curity vulnerabilities (for example, use
of strcpy() should be avoided).
Much better approaches exist.

Catching
implementation
bugs early
Programmers make little mistakes all
the time—a missing semicolon here,
an extra parenthesis there. Most of
the time, these gaffes are inconse-
quential; the compiler notes the
error, the programmer fixes the
code, and the development process
continues. This quick cycle of feed-
back and response stands in sharp
contrast to what happens with most
security vulnerabilities, which can
lie dormant (sometimes for years)
before discovery. The longer a vul-
nerability lies dormant, the more ex-
pensive it can be to fix, and adding
insult to injury, the programming
community has a long history of re-
peating the same security-related
mistakes. The promise of static

analysis is to identify many common
coding problems automatically be-
fore a program is released.

Static analysis tools examine the
text of a program statically, without
attempting to execute it. Theoreti-
cally, they can examine either a pro-
gram’s source code or a compiled
form of the program to equal bene-
fit, although the problem of decod-
ing the latter can be difficult. We’ll
focus on source code analysis here
because that’s where the most ma-
ture technology exists.

Manual auditing, a form of static
analysis, is very time-consuming,
and to do it effectively, human code
auditors must first know what secu-
rity vulnerabilities look like before
they can rigorously examine the
code. Static analysis tools compare
favorably to manual audits because
they’re faster, which means they can
evaluate programs much more fre-
quently, and they encapsulate secu-
rity knowledge in a way that doesn’t
require the tool operator to have the
same level of security expertise as a
human auditor. Just as a programmer
can rely on a compiler to consistently
enforce the finer points of language
syntax, the operator of a good static
analysis tool can successfully apply
that tool without being aware of the
finer points of security bugs.

Testing for security vulnerabili-

ties is complicated by the fact that
they often exist in hard-to-reach
states or crop up in unusual circum-
stances. Static analysis tools can peer
into more of a program’s dark cor-
ners with less fuss than dynamic
analysis, which requires actually run-
ning the code. Static analysis also has
the potential to be applied before a
program reaches a level of comple-
tion at which testing can be mean-
ingfully performed.

Aim for good,
not perfect
Static analysis can’t solve all your secu-
rity problems. For starters, static
analysis tools look for a fixed set of
patterns, or rules, in the code. Al-
though more advanced tools allow
new rules to be added over time, if a
rule hasn’t been written yet to find a
particular problem, the tool will never
find that problem. When it comes to
security, what you don’t know is
likely to hurt you, so beware of any
tool that says something like, “zero
defects found, your program is now
secure.” The appropriate output is,
“sorry, couldn’t find any more bugs.”

A static analysis tool’s output still
requires human evaluation. There’s
no way for a tool to know exactly
which problems are more or less im-
portant to you automatically, so
there’s no way to avoid trawling
through the output and making a
judgment call about which issues
should be fixed and which ones rep-
resent an acceptable level of risk.
Knowledgeable people still need to
get a program’s design right to avoid
any flaws—although static analysis
tools can find bugs in the nitty-gritty
details, they can’t critique design.
Don’t expect any tool to tell you, “I

BRIAN CHESS

Fortify
Software

GARY

MCGRAW

Cigital

A
ll software projects are guaranteed to have one ar-

tifact in common—source code. Together with

architectural risk analysis,1 code review for secu-

rity ranks very high on the list of software security

best practices (see Figure 1).2 Here, we’ll look at how to automate

Static Analysis for Security

32 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

see you’re implementing a funds
transfer application. You should
tighten up the user password re-
quirements.”

Finally, there’s Rice’s theorem,
which says (in essence) that any non-
trivial question you care to ask about
a program can be reduced to the halt-
ing problem. In other words, static
analysis problems are undecidable in
the worst case. The practical ramifi-
cations of Rice’s theorem are that all
static analysis tools are forced to make
approximations and that these ap-
proximations lead to less-than-per-
fect output. A tool can also produce
false negatives (the program contains
bugs that the tool doesn’t report) or
false positives (the tool reports bugs
that the program doesn’t contain).
False positives cause immediate grief
to any analyst who has to sift through
them, but false negatives are much
more dangerous because they lead to
a false sense of security. A tool is
sound if, for a given set of assump-
tions, it produces no false negatives,
but the down side to always erring on
the side of caution is a potentially de-
bilitating number of false positives.
The static analysis crowd jokes that
too high a percentage of false posi-
tives leads to 100 percent false nega-
tives because that’s what you get
when people stop using a tool. A tool
is unsound if it tries to reduce false
positives at the cost of sometimes let-
ting a false negative slip by.

Approaches to
static analysis
Probably the simplest and most
straightforward approach to static
analysis is the Unix utility grep.
Armed with a list of good search
strings, grep can reveal quite a lot
about a code base. The down side is
that grep is rather lo-fi because it
doesn’t understand anything about
the files it scans. Comments, string
literals, declarations, and function
calls are all just part of a stream of
characters to be matched against.

Better fidelity requires taking
into account the lexical rules that

govern the programming language
being analyzed. By doing this, a tool
can distinguish between a vulnerable
function call

gets(&buf);

a comment

/* never ever call gets */

and an innocent and unrelated
identifier

int begetsNextChild = 0;

Basic lexical analysis is the ap-
proach taken by early static analysis
tools, including ITS4, FlawFinder
(www.dwheeler.com/flawfinder/),
and RATS (www.securesoftware.
com), all of which preprocess and to-
kenize source files (the same first steps
a compiler would take) and then
match the resulting token stream
against a library of vulnerable con-
structs. Earlier, Matt Bishop and Mike
Dilger built a special-purpose lexical
analysis tool specifically for the pur-
pose of identifying time-of-check to
time-of-use (TOCTOU) flaws.3

While lexical analysis tools are
certainly a step up from grep, they
produce a hefty number of false posi-
tives because they make no effort to
account for the target code’s seman-
tics. A stream of tokens is better than
a stream of characters, but it’s still a
long way from understanding how a
program will behave when it exe-

cutes. Although some security defect
signatures are so strong that they
don’t require semantic interpretation
to be identified accurately, most are
not so straightforward.

To increase precision, a static
analysis tool must leverage more
compiler technology. By building an
abstract syntax tree (AST) from
source code, such a tool can take into
account the basic semantics of the
program being evaluated.

Armed with ASTs, the next deci-
sion to make is the analysis’ scope.
Local analysis examines the program
one function at a time and doesn’t
consider relationships between func-
tions. Module-level analysis considers
one class or compilation unit at a
time, so it takes into account relation-
ships between functions in the same
module and considers properties that
apply to classes, but it doesn’t analyze
calls between modules. Global analy-
sis involves analyzing the entire pro-
gram, so it takes into account all rela-
tionships between functions.

The analysis’s scope also deter-
mines the amount of context the
tool considers. More context is bet-
ter when it comes to reducing false
positives, but it can lead to a huge
amount of computation to perform.

Researchers have explored many
methods for making sense of pro-
gram semantics. Some are sound,
some aren’t; some are built to detect
specific classes of bugs, while others
are flexible enough to read defini-
tions for what they’re supposed to

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 33

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure 1. The software development life cycle. Throughout this series, we’ll focus on
specific parts of the cycle; here, we’re examining static analysis.

Building Security In

34 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

detect. Let’s review some of the most
recent tools:

• BOON applies integer range

analysis to determine whether a C
program can index an array out-
side its bounds.4 While capable of
finding many errors that lexical
analysis tools would miss, the
checker is still imprecise: it ignores
statement order, it can’t model in-
terprocedural dependencies, and it
ignores pointer aliasing.

• Inspired by Perl’s taint mode,
CQual uses type qualifiers to per-
form a taint analysis, which detects
format string vulnerabilities in C
programs.5 CQual requires a pro-
grammer to annotate a few vari-
ables as either tainted or untainted
and then uses type inference rules
(along with pre-annotated system
libraries) to propagate the qualifiers.
Once the qualifiers are propagated,
the system can detect format string
vulnerabilities by type checking.

• The xg++ tool uses a template-
driven compiler extension to at-
tack the problem of finding kernel
vulnerabilities in the Linux and
OpenBSD.6 It looks for locations
where the kernel uses data from an
untrusted source without check-
ing it first, methods by which a
user can cause the kernel to allo-
cate memory and not free it, and
situations in which a user could
cause the kernel to deadlock.

• The Eau Claire tool uses a theorem
prover to create a general specifica-
tion-checking framework for C
programs.7 It can help find com-
mon security problems like buffer
overflows, file access race condi-
tions, and format string bugs. De-
velopers can use specifications to
ensure that function implementa-

tions behave as expected.
• MOPS takes a model-checking

approach to look for violations of
temporal safety properties.8 Devel-

opers can model their own safety
properties, and some have used the
tool to check for privilege man-
agement errors, incorrect con-
struction of chroot jails, file access
race conditions, and ill-conceived
temporary file schemes.

• Splint extends the lint concept into
the security realm.9 By adding an-
notations, developers can enable
the tool to find abstraction viola-
tions, unannounced modifications
to global variables, and possible
use-before-initialization errors.
Splint can also reason about mini-
mum and maximum array bounds
accesses if it is provided with func-
tion pre- and postconditions.

Many static analysis approaches
hold promise, but have yet to be di-
rectly applied to security. Some of the
more noteworthy ones include ESP
(a large-scale property verification
approach),10 model checkers such as
SLAM and BLAST (which use pred-
icate abstraction to examine program
safety properties),11,12 and FindBugs
(a lightweight checker with a good
reputation for unearthing common
errors in Java programs).13

Several commercial tool vendors
are starting to address the need for
static analysis, moving some of the
approaches touched on here into the
mainstream.

G ood static analysis tools must be
easy to use, even for non-secu-

rity people. This means that their re-
sults must be understandable to nor-
mal developers who might not

know much about security and that
they educate their users about good
programming practice. Another
critical feature is the kind of knowl-
edge (the rule set) the tool enforces.
The importance of a good rule set
can’t be overestimated.

In the end, good static checkers
can help spot and eradicate common
security bugs. This is especially im-
portant for languages such as C, for
which a very large corpus of rules al-
ready exists. Static analysis for secu-
rity should be applied regularly as
part of any modern development
process.

References
1. D. Verndon and G. McGraw. “Risk

Analysis in Software Design,” IEEE
Security & Privacy, vol. 2, no. 5,
2004, pp. 79–84.

2. G. McGraw, “Software Security,”
IEEE Security & Privacy, vol. 2, no.
2, 2004, pp. 80–83.

3. M. Bishop and M. Dilger, “Check-
ing for Race Conditions in File
Accesses,” Computing Systems, vol.
9, no. 2, 1996, pp. 131–152.

4. D. Wagner et al., “A First Step
Towards Automated Detection of
Buffer Overrun Vulnerabilities,”
Proc. 7th Network and Distributed
System Security Symp. (NDSS2000),
Internet Soc., 2000, pp. 3–17.

5. J. Foster, T. Terauchi, and A.
Aiken, “Flow-Sensitive Type
Qualifiers,” Proc. ACM Conf. Pro-
gramming Language Design and
Implementation (PLDI2002), ACM
Press, 2002, pp. 1–12.

6. K. Ashcraft and D. Engler, “Using
Programmer-Written Compiler
Extensions to Catch Security
Holes,” Proc. IEEE Symp. Security
and Privacy, IEEE CS Press, 2002,
pp. 131–147.

7. B. Chess, “Improving Computer
Security using Extended Static
Checking,” Proc. IEEE Symp. Secu-
rity and Privacy, IEEE CS Press,
2002, pp. 118–130.

8. H. Chen and D. Wagner, “MOPS:
An Infrastructure for Examining
Security Properties of Software,”

Good static checkers can help spot and
eradicate common security bugs.

Building Security In

Proc. 9th ACM Conf. Computer and
Communications Security (CCS2002),
ACM Press, 2002, pp. 235–244.

9. D. Larochelle and D. Evans, “Stat-
ically Detecting Likely Buffer
Overflow Vulnerabilities,” Proc.
10th Usenix Security Symp.
(USENIX’01), Usenix Assoc.,
2001, pp. 177–189.

10. M. Das, S. Lerner, and M. Seigle,
“ESP: Path-Sensitive Program Ver-
ification in Polynomial Time,”
Proc. ACM Conf. Programming Lan-
guage Design and Implementation
(PLDI2002), ACM Press, 2002,
pp. 57–68.

11. T. Ball and S.K. Rajamani, “Auto-
matically Validating Temporal
Safety Properties of Interfaces,”
Proc. 8th Int’l SPIN Workshop on
Model Checking of Software, LNCS
2057, Springer-Verlag, 2001, pp.
103–122.

12.T.A. Henzinger et al., “Software
Verification with Blast,” Proc. 10th
Int’l Workshop Model Checking of
Software, LNCS 2648, Springer-
Verlag, 2003, pp. 235–239.

13. D. Hovemeyer and W. Pugh,
“Finding Bugs is Easy,” to appear in
Companion of the 19th Ann. ACM
Conf. Object-Oriented Programming,
Systems, Languages, and Applications,
ACM Press, 2004.

Brian Chess is chief scientist at Fortify
Software. His technical interests include
static analysis, defect modeling, and
Boolean satisfiability. He received a PhD
in computer engineering from the Uni-
versity of California, Santa Cruz. Contact
him at brian@fortifysoftware.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. McGraw is the coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 35

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

